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Ecological and Lyapunov Stability*

James Justus†‡

Ecologists have proposed several incompatible definitions of ecological stability. Em-
ulating physicists, mathematical ecologists commonly define it as Lyapunov stability.
This formalizes the problematic concept by integrating it into a well-developed math-
ematical theory. The formalization also seems to capture the intuition that ecological
stability depends on how ecological systems respond to perturbation. Despite these
advantages, this definition is flawed. Although Lyapunov stability adequately char-
acterizes perturbation responses of many systems studied in physics, it does not for
ecological systems. This failure reveals a limitation of its underlying mathematical
theory, and an important difference between dynamic systems modeling in physics and
ecology.

1. Introduction. Like many scientific concepts, fully adequate definitions
of some ecological concepts have not yet been formulated. Ecological
stability is one such concept. Proposed definitions of it are not fully sat-
isfactory and, worse, seem incompatible (Shrader-Frechette and McCoy
1993). Although it is incorrect to conclude from this that the concept itself
is problematic (Odenbaugh 2001), the multitude of incompatible defini-
tions initiates and exacerbates conceptual confusion.

Among mathematical ecologists, ecological stability is commonly de-
fined as Lyapunov stability, named after the Russian mathematician who
first precisely defined the concept to describe the apparently stable equi-
librium behavior of the solar system (Lyapunov [1892] 1992). His defi-
nition has found widespread application outside this context and is fre-
quently used to analyze mathematical models of biological communities
(Logofet 1993). May (1974) used this definition, for instance, in his in-
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‡A Josephine De Kármán fellowship supported this research. For helpful comments
and discussions, thanks to Mark Colyvan, Simon Huttegger, Greg Mikkelson, Alex-
ander Moffett, Samir Okasha, Eric Pianka, Mark Sainsbury, Carl Salk, Sahotra Sarkar,
and audience members at the University of Wisconsin at Madison, where an early
version of this paper was presented.



422 JAMES JUSTUS

fluential analysis of relationships between the stability and complexity of
such models.

The definition has some clear advantages. Unlike other definitions, it
integrates ecological stability into a thoroughly studied mathematical the-
ory that has proved fruitful in many sciences, especially mathematical
physics. It also seems to formalize the intuition that ecological stability
depends on community response to perturbation. Despite these apparent
advantages, ecological stability should not be defined as Lyapunov
stability.

Sections 2 and 3 describe the concept of Lyapunov stability, its un-
derlying mathematical theory, and show why this theory is so successful
within physics. Section 4 considers the apparent advantages of the defi-
nition and illustrates how Lyapunov stability applies to mathematical
models of biological communities. Section 5 argues this definition is prob-
lematic, focusing specifically on biological interpretation of Lyapunov
stability. Based on this analysis, Section 6 draws some general conclusions
about scientific definition and highlights an important difference between
dynamic systems modeling in physics and in ecology.

2. Lyapunov Stability. To ensure sufficient generality, represent a system
by a position vector x(t) (t represents time) in a n-dimensional Euclidean
state space E. Assume E is governed by a vector function F representing
the magnitude and change of direction it induces on x(t). F represents,
therefore, the factors responsible for the dynamics of the system x(t)
represents. Points in E for which are called equilibrium points, andF p 0
unperturbed position vectors at such points remain stationary.

Lyapunov stability (‘L-stability’ hereafter) is a property of system be-
havior in neighborhoods of equilibria. Specifically, an equilibrium x* is
Lyapunov stable (‘L-stable’ hereafter) in iffE (x* ! E P E)x x

(G! 1 0)(ad 1 0)(Fx(t ) ! x*F ! d ⇒ (Gt ≥ t )(Fx(t) ! x*F ! !)), (1)0 0

where , represents the system at some initial time t0, and! ≥ d x(t ) ! E0 x

‘F7F’ designates a Euclidean distance metric on E. The initial displacement
from x* to x(t0) represents the perturbation to the system. Informally, (1)
therefore says x* is L-stable if for any !-neighborhood of x* a smaller d-
neighborhood can be found such that if the system is perturbed within
the d-neighborhood, it never leaves the !-neighborhood. x* is asymptot-
ically L-stable if (1) and .lim x(t) p x*tr"

If x* is (asymptotically) L-stable on all of E, x* is (asymptotically and)
globally L-stable. The subspace Ex of E within which systems can be
displaced from an L-stable x* and satisfy (1) nontrivially, that is, the
antecedent and consequent of the conditional hold for the relevant quan-
tification, is called the stability domain of x*. The stability domain within
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Figure 1. Graphical representation of asymptotic and nonasymptotic Lyapunov
stability.

which systems can be displaced from an asymptotically L-stable x* and
is called the attraction domain of x* (see Figure 1).lim x(t) p x*tr"

In general, L-stability cannot be assessed with (1) because explicit so-
lutions for x(t) can seldom be found. For instance, scientific models often
characterize x(t) in terms of differential equations:

dx(t)
p F(x(t), Q), (2)

dt

where Q is a set of parameters designating factors that influence system
dynamics but are uninfluenced by them, and F takes the form of an
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matrix.1 For complicated systems modeled by (2) that scientistsn # n
study, however, explicit solutions for x(t) are rarely available. Without
such solutions, system behavior as required by (1) cannot be directly
evaluated.

3. The Direct and Indirect Methods. Lyapunov ([1892] 1992) recognized
this difficulty and developed two methods for assessing (1) indirectly. The
first ‘indirect method’ involves linearizing F at x*. Specifically, let

"F(x(t), Q)
A p F F"x xpx*

be the Jacobian matrix of F evaluated at x*. The eigenvalues of A de-
termine whether x* is stable. These are scalar values such thatl i

, that is, the roots of the characteristic polynomial of A.det (A ! l I) p 0i

Lyapunov proved x* is asymptotically L-stable if

Rel (A) ! 0 for all i, (3)i

where designates the real part of the ith eigenvalue of A. SinceRel (A)i

A is only defined at x*, stability determined by the indirect method is
restricted to infinitesimal neighborhoods of x*. For this reason, it is called
local stability. The indirect method is prevalent in mathematical modeling
because it is almost universally applicable: it applies to any system rep-
resentable by continuous and continuously differentiable equations, such
as (2) (Hinrichsen and Pritchard 2005).

Stability criteria based on the indirect method such as (3) have a serious
limitation: they provide no information about the extent of attraction
domains. This prompted Lyapunov ([1892] 1992) to develop a ‘direct
method’ for evaluating L-stability. It involves constructing a differentiable
scalar Lyapunov function (‘L-function’ hereafter) V(x) with an origin at
x* (i.e., ) such that:x* p 0

(i) V(x) is positive definite: (a) ; (b) for all ;V(0) p 0 V(x) 1 0 x ( 0
and

(ii) for all x,∇V(x) 7 F(x, Q) ≤ 0

where ‘7’ and ‘∇’ designate the dot product and gradient vector function.
Lyapunov proved the existence of an L-function on is sufficientE P Ex

for L-stability of x* in this region, and that with strict inequality in (ii),
x* is asymptotically L-stable. This condition was also later proved nec-
essary (Hahn 1963). The ability to construct an L-function is thus a sta-

1. Since F is not a function of t, (2) represents autonomous dynamic systems that do
not explicitly depend on time. These models are common in science and the focus of
the following analysis.
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bility criterion. The extent of the attraction domain of an equilibrium can
also be evaluated using L-functions (Hahn 1963). As a methodology, it
is called ‘direct’ because whether such a function can be constructed de-
pends directly upon the mathematical form of equations like (2), unlike
the indirect method, which relies on their linearization to evaluate stability,
and unlike direct evaluation of (1), which requires explicit solutions to
(2).

Although no general method for constructing L-functions is known,
the direct method has proven to be extremely useful in analyzing physical
systems, especially in the classical framework governed by only Newtonian
mechanics and friction. Across scientific fields, this is exceptional rather
than typical. Constructing L-functions is usually extremely difficult for
the predominantly nonlinear systems scientists study (Goh 1977). The
reason for its utility in the classical framework is twofold. First, there are
highly confirmed mathematical models describing numerous types of sys-
tems in this framework. The likelihood therefore seems high that appli-
cation of the direct method to these models will reveal the true stability
properties of the systems they accurately represent. Second, there are
certain quantities, such as total energy, that are conserved or monoton-
ically dissipated in such systems, depending on how they are characterized
(e.g., closed or open). These quantities ensure L-functions exist for models
of these systems. Lyapunov, in fact, developed the L-function to generalize
the classical energy concept, and energy conservation played an important
role in his development of the proof about the connection between stability
and L-functions (Lyapunov [1892] 1992).

To illustrate, consider a closed particle mass system governed by a
conservative force field G in a frictionless Newtonian framework. System
energy, V(x, v), is designated by the Hamiltonian

1 2V(x, v) p mFvF # U(x), (4)
2

where x and v are position and velocity vectors, m represents particle
mass, ‘F7F’ designates the magnitude of 7, and U is a scalar potential
energy function such that . Energy conservation ensuresG(x) p !∇U(x)

V(x, v) p c, (5)

where c is a constant. At an equilibrium x*, , , and hencev p 0 G p 0
. If x* is also a local minimum of U(x), an ‘energy difference’∇U(x) p 0

function can be defined: . isV*(x, v) V*(x, v) p V(x, v) ! V(x*, 0) V*(x, v)
an L-function and x* is therefore stable. In this case, energy conservation
entails the second requirement of L-functions ([ii] from above) is satisfied
by equality. If, however, system energy were continually decreasing instead
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of conserved, depleted by friction for instance, (ii) would be satisfied by
strict inequality and x* would be asymptotically stable.

Within the classical framework, stability properties of more complicated
models that include and disregard friction can be evaluated with the direct
method. The method is also useful in nonclassical frameworks with similar
properties, such as mass–energy conservation in special relativity theory.
The equations characterizing systems in these and the classical framework
are often too complex to solve analytically, and the direct method provides
the only means by which attraction domains of equilibria can be deter-
mined. In a wide variety of frameworks within physics, therefore, the
direct method and concept of L-stability are indispensable.

4. Lyapunov Theory and Community Modeling. The outline of Lyapunov
theory above suggests some advantages of defining ecological stability as
L-stability. First, the definition formalizes the concept and integrates it
into a well-known mathematical theory. Stability properties of community
models can then be assessed with analytical techniques like the indirect
and direct methods.

Besides the obvious virtues of formalization, L-stability also seems to
capture precisely the intuition that ecological stability depends upon com-
munity response to perturbation. Consulting (1) and Figure 1, think of
a community perturbed at time t0 from an L-stable x* to x(t0) within the
stability domain of x*. Equation (1) then entails that the perturbed com-
munity will remain in relevant !-neighborhoods of x* for , that is,Gt ≥ t0

the effects of the perturbation are circumscribed.2 Some other popular
definitions define ecological stability in terms of the variability of pop-
ulations in a community and are mathematically precise in that they are
statistical functions of model variables (e.g., Lehman and Tilman’s [2000]
“temporal stability”). They do not, however, as L-stability does, provide
a mathematical characterization of equilibrium system dynamics. If x* is
L-stable, for instance, the conditional in (1) ensures predictions can be
made about system behavior after perturbations from x* within its sta-
bility domain. Mathematical definitions in the statistical sense cannot
ground such predictions unless future values of variables depend upon
past values in some systematic way, and the precise form of the dependency
is known. The concept of L-stability is an important analytic tool within

2. L-stability with respect to a set of perturbations is a stronger concept than unrela-
tivized L-stability because it places constraints on the size of the d-neighborhood in
the antecedent of the conditional of (1). These constraints are often said to define the
system’s stability domain for a given equilibrium (see the characterization in Section
2). Strictly speaking, (1) alone entails nothing about the stability domain of a given
equilibrium. I owe Peter Vranas for emphasizing the import of making this distinction.
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physics because (1) provides a mathematically precise description of the
equilibrium dynamics of systems.

In addition, properties of community response to perturbation that are
fundamental components of ecological stability seem to be formalizable
with the direct method. The size of attraction domains of asymptotically
L-stable equilibria and the rate systems return to them, for instance, are
definable in terms of L-functions (Hahn 1963, Sections 12, 22–25). The
larger the attraction domain, for instance, the stronger the perturbations
of variables a system can sustain and return to x*, which is often called
system ‘tolerance’. Similarly, the ‘steeper’ the L-function V(x) (as gauged
by ∇V(x)), the faster it returns to x*, often called system ‘resilience’. If
L-stability adequately defined ecological stability, it would therefore be
possible to formalize the properties of tolerance and resilience and their
relation to the stability of biological communities. Specifically, the intuitive
idea that ecological stability increases with the strength of perturbation
from which a system can return to equilibrium and with the speed of
return to equilibrium after perturbation would be formalizable.

Finally, the direct method adequately characterizes the equilibrium dy-
namics of many systems in physics (and other sciences), and it is reason-
able to expect the method will function similarly for ecological systems
since their models share a similar mathematical structure. Like systems
studied in physics, biological communities are usually modeled by dif-
ferential equations. The only difference is that components of the vector

represent biological variables, usuallyx(t) p Ax (t), . . . , x (t), . . . , x (t)S1 i n

population sizes of species in a community, instead of typical physical
variables.

This expectation seems to be supported, for instance, by the classical
Lotka-Volterra model of one-predator, one-prey communities:

dx (t)y
p ax (t) ! ax (t)x (t), (6a)y y ddt

dx (t)d p !bx (t) # bx (t)x (t), (6b)d d ydt

where xd and xy represent predator and prey population sizes, a represents
prey birth rate, b represents predator death rate; and representa, b 1 0
the effect of predator individuals on prey individuals and vice versa. Set-
ting the left sides to 0 and solving yields one nontrivial equilibrium x*
where and . An L-function for this equilibrium existsx* p b/b x* p a/ad y

for all :x , x 1 0d y

V(x) p c (x ! x* ln x ) # c (x ! x* ln x ), (7)1 y y y 2 d d d
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where are constants, so x* is globally stable by the direct methodc , c 1 01 2

(Logofet 1993).
A property of (6) discovered by Vito Volterra reveals an interesting

structural similarity between models of ecological and physical systems,
which in turn seems to justify the utility of Lyapunov theory in ecology.
Equations (6a) and (6b) can be rewritten as

˙g x p g ax (t) ! x (t)x (t), (8a)1 y 1 y y d

˙g x p !g bx (t) # x (t)x (t), (8b)2 d 2 d d y

where , , , and . Adding these˙ ˙x p dx (t)/dt x p dx (t)/dt g p 1/a g p 1/by y d d 1 2

equations and integrating yields

t t

˙ ˙g x # g x # g a x (t) ! g b x (t) p c, (9)1 y 2 d 1 ! y 2 ! d
0 0

where c is a constant. Volterra believed (9) corresponded to a form of
energy conservation (compare with [4] and [5]).3 He called the first two
terms “actual demographic energy,” and the second two “potential de-
mographic energy” (Scudo 1971).4 If this kind of structural similarity
generalizes broadly across mathematical models of ecological systems, a
view shared by another founder of mathematical ecology, Alfred Lotka
(1956), it would seem to indicate that the stability concept used in physics
is appropriate for ecology.

5. Lyapunov Stability in an Ecological Context. The adequacy of a def-
inition depends upon what it requires of the defined concept. If ecological
stability is defined as L-stability, for instance, this stipulates conditions
biological communities must satisfy to be ecologically stable. If these
conditions are unreasonable—if they are biologically unrealistic, too weak,
or too strong for instance—the definition is inadequate. Despite its ap-
parent advantages, interpreting L-stability in ecological terms furnishes
strong reasons for rejecting the definition.

There are five types of L-stability to consider as definitional candidates
for ecological stability: local stability, nonasymptotic stability within a
nonlocal stability domain, asymptotic stability within a nonlocal attrac-
tion domain, global nonasymptotic stability, and global asymptotic sta-
bility. Consider the weakest first. Although the frequent focus of com-

3. In fact, (9) is the underlying basis of (7). See Logofet 1993, 111–114.

4. At least for the first two terms, the resemblance with energy conservation is some-
what weak. The ‘actual demographic energy’ corresponds closely with the mathematical
form for the momentum of two particles, not their kinetic energy.
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munity modeling, perhaps because it is relatively easy to evaluate with
the indirect method (Hastings 1988), local stability defines ecological sta-
bility poorly. Differentiable models of systems can be linearized with the
Jacobian matrix at any point of state space, such as at an equilibrium
(see Section 3). By itself, however, linearization only provides information
about local system behavior, that is, only in an infinitesimal neighborhood
of the linearization point. Local stability therefore says nothing about
system behavior outside this extremely restricted domain. Besides it being
fundamentally unclear how perturbation within an infinitesimal domain
can be biologically interpreted (or empirically measured), real-world per-
turbations are clearly not of infinitesimal magnitude. Any real pertur-
bation will expel a system at a strictly locally stable equilibrium from its
stability domain. Local stability of systems like biological communities
consequently provides no information about their response to common
perturbations like drought, fire, population reduction by disease, etc. Ap-
plication of the indirect method to community models, which can only
evaluate local stability, therefore yields negligible insight into the com-
munity dynamics relevant to ecological stability.5

For different reasons, Mikkelson (1997) reaches a similar conclusion
about local stability. His argument is based on this principle: “Do not
employ a definition that turns what was originally thought to be an im-
portant empirical matter into a generic a priori exercise” (1997, 483).
Applying this principle to the task of defining ecological stability, Mik-
kelson continues:

Requiring that every single species in a fifty-species community have
a given property—any property—is a much stricter criterion than
requiring that every species in a ten-species community have the same
property. This means that as the number of species increases, the
probability that the criteria are met almost certainly decreases. This
leads to a default expectation that stability will decline with increasing
diversity. (1997, 485)

Since (asymptotic) local stability requires every species return to its
preperturbation value, Mikkelson claims that defining ecological stability
as local stability decreases the likelihood species-rich communities will be
stable. It thereby biases a priori the debate about the relationship between
community stability and diversity (construed as species richness) towards
an inverse relationship, and violates his principle. On this basis, Mikkelson
concludes the definition is indefensible.

The first problem with this argument is Mikkelson’s assumption that

5. Food web modeling of community stability is usually based on the indirect method,
and has been criticized for this reason (Hastings 1988).
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the likelihood of local stability of communities generally decreases with
increasing species richness (1997, 494). This assumption is the underlying
basis of the long quote above, but its truth is, however, an empirical rather
than a priori issue. Interspecific interactions that emerge with greater
species richness often increase the likelihood of stability, as the stabilizing
effect of adding species to some community models shows (May 1974).

The second problem is that Mikkelson’s principle is an unjustifiable
adequacy condition for definitions in science because it confers too much
import to unresolved scientific questions, regardless of how poorly for-
mulated they may be. According to the principle, scientific concepts should
not be defined in ways that resolve, even partially, outstanding questions
that involve them. Yet scientific questions may themselves be ill-formed
or confused due to ambiguity or vagueness of the concepts they concern.
In fact, Shrader-Frechette and McCoy (1993) argue that the stability—
diversity—complexity debate of community ecology is itself an example.
Apparently intractable scientific debates and recalcitrant questions are
sometimes justifiably resolved or, more accurately, dissolved when precise
definitions of concepts reveal their misguided nature.6

The stronger concept of nonasymptotic L-stability within a nonlocal
stability domain also inadequately defines ecological stability. Without
asymptotic dynamics driving systems perturbed from equilibrium to return
to it, successive weak perturbations can displace communities from their
stability domains and, in the extreme case, cause species extinction. Eco-
logical stability undeniably requires, however, persistence of the species
of a community subject to successive weak perturbations. This reasoning
also shows global nonasymptotic L-stability inadequately defines ecolog-
ical stability.

Even with asymptotic dynamics, however, L-stability does not define
ecological stability adequately. To see why, consider defining ecological
stability as the strongest L-stability property: global asymptotic stability.
Unlike the L-stability properties considered thus far, global asymptotic
stability appears to be much stronger than ecological stability because it
seems to entail that a community will return to equilibrium following any
perturbation that does not eradicate its species. Model variables of systems
at asymptotically and globally stable equilibria that are perturbed to one
percent of their equilibrium values, for instance, will deterministically
return to their initial values. This response to such severe perturbations
is not required for a biological community to be ecologically stable, but
it certainly seems sufficient.

Despite its apparent plausibility, the idea that global asymptotic L-

6. Einstein’s definition of simultaneity, for instance, arguably settled a number of
scientific questions about temporal relations between events.
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stability is sufficient (but not necessary) for ecological stability is unjus-
tified. It is based on a flawed conception of ecological perturbation. Real-
world perturbations to biological communities do not merely affect
population sizes, represented by variables in models like (2). They also
temporarily change environmental factors that influence community dy-
namics, represented by model parameters. As May (1974, 216) creatively
put it:

In nature, population perturbations are driven not by the stroke of
a mathematician’s pen resetting initial conditions [i.e., resetting var-
iable values to represent perturbations], but by fluctuations and
changes in environmental parameters such as birth rates, carrying
capacities, and so on.7

Perturbations may induce, for instance, changes in environmental pa-
rameters that modify the strength and qualitative nature of interspecific
and intraspecific community interactions. Initially noninteracting species
may begin competing or exhibiting other nonneutral interactions, and
vice versa. Since real-world perturbations may affect environmental fac-
tors that influence community dynamics as well as population sizes of
species, they should be represented by corresponding changes in variable
and parameter values. Ecological stability should then be evaluated with
respect to system behavior following both types of changes.

L-stability, however, only assesses system response to temporary
changes in variable values (see [1] above). It does not consider system
responses to changes in parameters and thus provides only a partial ac-
count of the type of system response to perturbation ecological stability
requires. Lyapunov’s direct method is therefore not a suitable method-
ology for analyzing ecologically relevant nonlocal stability properties of
standard community models, although it accurately estimates stability to
perturbations affecting only model variables (see Section 6).

This difference between Lyapunov and ecological stability consequently
leads to different evaluations of the stability of mathematical models of
biological communities. Consider the generalization of (6) to n-species:

ndxi p x r ! g x x , (10)"i i ij i jdt jp1

where ri designates the intrinsic growth rate of species i; gij designates the

7. This remarks occurs in May’s (1974) “Afterthoughts,” in which he goes on to suggest
that a fully adequate account of the property labeled ‘tolerance’ above will require an
assessment of how community dynamics changes as environmental parameters change.
The predominant focus of his and subsequent mathematical modeling concerned with
ecological stability, however, has been on L-stability.
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effect of species j on species i; and , . (10) can represent several1 ≤ i j ≤ n
realistic features of biological communities. The gii designate intraspecific
interactions and the gij ( ) can represent any type of interspecific in-i ( j
teraction: predator-prey , competition , mutualismg g ! 0 g , g ! 0ij ji ij ji

, and so on.g , g 1 0ij ji

Two types of systems, called ‘conservative’ and ‘dissipative’, have been
studied with (10) and highlight the difference between ecological and L-
stability particularly clearly. If

n

g x x ≥ 0, (11)" ij i j
i, jp1

the system is dissipative with strict inequality, and conservative with equal-
ity. Informally, (11) says interspecific interactions do not influence total
system dynamics in conservative communities and retard them in dissi-
pative communities. Dissipative and conservative communities, Logofet
(1993) suggests, are analogous to mechanical systems with and without
friction.

In conservative (dissipative) communities: (i) ( ) for all i;g p 0 g 1 0ii ii

and (ii) for all . (i) entails there is intraspecific self-dampingg p !g i ( jij ji

in dissipative communities, and none in conservative communities. (ii)
entails the communities only exhibit antisymmetric interspecific predator-
prey interactions. Note that (10) is not necessarily a two trophic level
model of n/2 predators and n/2 prey. Species i may be the predator and
prey of different species, and part of k-length ( ) food chains.k ≤ n

The direct method shows x* is a nontrivial equilibrium, that is,
, of conservative n-species community models iff x* is globally(Gi)(x* 1 0)

L-stable; it is asymptotically and globally L-stable iff the community
model is dissipative (Logofet 1993). These results only hold, however, if
n is even. As an indication of what defining ecological stability as global
L-stability would require of communities modeled by (10) and (11), this
restriction seems arbitrary and counterintuitive. Without any empirical
evidence or a biological reason to suppose there is a relationship between
evenness or oddness of species richness and ecological stability, of which
there seems to be none, this requirement is unreasonable.8

A second, more revealing feature of these results is their dependence
on the exact antisymmetry of [gij]. If jeopardized even slightly, they no
longer hold and the system may become unstable (Levin 1981). Small
changes in the values of these parameters caused by realistic but weak

8. It is possible such a relationship exists, but has not yet been found. Most ecologists
highly doubt it will. May (1974, 53), for instance, suggested it “border[s] on the ridic-
ulous,” and Volterra, who first recognized the fact, was similarly skeptical (Scudo 1971).
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perturbations may therefore undermine asymptotic global stability and
initiate instability. This occurs because L-stability defines stability strictly
in terms of system behavior after changes to variables, not after changes
to parameters as well. For this reason, asymptotic global stability and
weaker L-stability concepts poorly define ecological stability.

The disparity between what the direct method says about the stability
properties of biological communities and what ecological stability seems
to require is not limited to conservative and dissipative models of com-
munities. A wide range of community models the direct method shows
are asymptotically stable in nonlocal domains are similarly sensitive to
slight changes in parameters (see Hallam 1986 and references therein).

In general, therefore, L-stability inadequately captures the intuition that
ecological stability depends on community response to perturbation be-
cause it inadequately represents real-world perturbations. As such, L-
stability fails to capture principal features of ecological stability like re-
silience and tolerance. With respect to abiotic perturbations such as
temporary temperature or precipitation anomalies, for instance, resilience
and tolerance cannot be measured using the direct (or indirect) method
(see Section 4). Temporary changes in model parameters representing these
environmental factors, not changes to model variables, best represent these
types of perturbation. Resilience and tolerance should then be gauged by
the subsequent system behavior (represented by changes in variable val-
ues) following these parameter changes. L-stability, however, cannot rep-
resent these properties properly because it cannot accurately represent
community response to perturbations that affect factors represented by
model parameters rather than just variables. Since tolerance and resilience
of biological communities depend upon how communities respond to
perturbations that affect model variables and parameters, they therefore
cannot be defined in terms of properties of L-functions (see Section 3).
Whereas L-stability focuses strictly on system behavior in state space,
ecological stability essentially concerns system behavior in parameter
space as well. Consequently, L-stability is not a sufficient condition for
ecological stability, as some ecologists have explicitly suggested (e.g., Lo-
gofet 1993, 109) and many ecologists assume.

6. Conclusion. That ecological stability should not be defined as L-sta-
bility does not entail the latter should play no role in mathematical mod-
eling of biological communities. For a community at equilibrium, as-
ymptotic L-stability within nonlocal attraction domains adequately
represents ecologically stable responses to perturbations that alter species
population sizes but leave community structure and parameter values
unchanged. L-stability is therefore a plausible necessary condition for
ecological stability. Moderate culling of some community species or tem-
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porary cessation of plant or animal harvesting in ecosystems (both rep-
resented by changes in variables) where it has a long history are plausible
examples of such perturbations. In fact, the effects fishing cessation during
WWI would have on fish populations motivated Volterra to begin de-
veloping mathematical models of communities (Scudo 1971).

This analysis also does not detract from the obvious gains in precision,
rigor, and other scientific virtues afforded by mathematical dynamic sys-
tems modeling within ecology. It does expose, however, a limitation of
the stability definition that usually accompanies this type of modeling. If
ecological systems like communities were completely analogous to systems
studied within physics for which Lyapunov’s methods are so successfully
applied, defining ecological stability as L-stability would be entirely jus-
tifiable. Section 5 makes clear there is, however, a crucial difference in
how perturbations should be represented in the two contexts. Scientific
definitions that make an initially problematic concept precise by inte-
grating it into a systematically developed mathematical theory, even one
fruitfully utilized in other sciences, are therefore not always satisfactory.

Within classical mechanics, force fields governing interactions between
bodies, such as gravitation, are usually invariant. Masses of bodies in the
system, overall system structure (e.g., mass-spring system, damped pen-
dulum, mass-pulley system, etc.), and other system features are also usu-
ally held or assumed fixed in this framework. Model features representing
these system properties, such as parameter values and model structure,
are correspondingly fixed. With the background held constant in this way,
perturbations are represented by temporary finite changes in variable val-
ues, for instance, by displacements of position vectors and alterations to
velocity vectors (see Section 3). Energy is conserved or monotonically
dissipated in these systems depending upon how they are characterized,
so L-functions can always be constructed for them and their stability
properties evaluated. Since perturbations of such systems are not taken
to change the system properties represented by parameters and model
structure, L-stability captures their important stability properties.

Within ecology, however, parameters representing external factors af-
fecting species and their interactions are much more likely to change than
in systems studied within classical mechanics because they are regularly
altered by real-world perturbations.9 An appropriate definition of eco-
logical stability therefore requires integrating L-stability with a concept

9. The difference between ecological systems and those typically studied in physics
should not be overstated, however. In fluid mechanics, for instance, the background
structure of the systems studied is highly variable. For the reasons discussed in Section
5, therefore, L-stability would not be an appropriate representation of the stability of
these systems.
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representing how communities respond to these types of structural change:
a structural stability concept. This would adequately account for how
communities respond to real-world perturbations represented by tem-
porary changes in variable and parameter values. Resilience and tolerance
to real-world perturbations would be representable with such a concept.

This suggestion poses a formidable challenge to mathematical ecologists
because structural stability is a much more technically complex mathe-
matical concept than L-stability, and the most common structural stability
concept used in mathematics is also an infinitesimal concept, like local
(Lyapunov) stability (see Peixoto 1959). The dearth of work, especially
biologically-oriented work, devoted to structural stability (May 1974),
however, may explain its lack of application within mathematical ecology,
not any essential mathematical intractability of the concept.

The first prominent mathematical ecologists, Lotka and Volterra, were
physicists by training and this significantly influenced their approach to
modeling biological systems (Kingsland 1995). Their work, moreover, sub-
sequently set much of the agenda of twentieth century mathematical ecol-
ogy. Not surprisingly, most mathematical ecologists have used the concept
of L-stability and the direct and indirect methods to analyze community
models. A stability concept that incorporates structural stability, however,
constitutes a more defensible definition of ecological stability, and would
better characterize the dynamics of ecologically stable biological com-
munities.
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